TIME INTERVAL BETWEEN OVULATION TRIGGERING AND OOCYTE INJECTION: DOES IT AFFECT THE EMBRYOLOGICAL AND CLINICAL OUTCOME?

I declare that no commercial or financial interest has influenced the content of this presentation
Timings in ART

1. Ovulation triggering
2. Oocyte retrieval
3. Denudation/Injection
4. Clinical outcome
INTRODUCTION

- In vivo oocyte maturation

Ovulation triggering

Oocyte retrieval

36-38h

Optimal maturation rates
(Bosdou et al., 2015; Garor et al., 2015)

- Nuclear maturation (MII)
- Cytoplasmic maturation

vs. Risk of spontaneous ovulation
(Nargund et al., 2001; Raziel et al., 2006)
INTRODUCTION

Is in vitro oocyte incubation necessary to accomplish full competence?

= *In vitro* oocyte maturation

Oocyte Retrieval

2

Denudation/Injection

3

ESHRE Guidelines

Timing of denudation should be kept close to timing of injection

(ESHRE Guideline Group on Good Practice in IVF labs, 2015)
INTRODUCTION

Is in vitro oocyte incubation necessary to accomplish full competence?

= In vitro oocyte maturation

Oocyte Retrieval

Denudation/Injection

1-3h

Yes! Fertilization
(Falcone et al., 2008; Pujol et al., 2018)

No! Pregnancy and Live Birth
(Garor et al., 2015; Barcena et al., 2016)
INTRODUCTION

How much time do we actually have?

1. Ovulation triggering: 36-38h
2. Oocyte Retrieval
3. Denudation/Injection: 1-3h

Total: 37-41h (Dozortsev et al., 2004; Barcena et al., 2016)
INTRODUCTION

Timings in UZ BRUSSELS

Ovulation triggering
1

36h

Oocyte Retrieval
2

2-3h

Denudation/Injection
3

38-39h

X 15 OPUs/day (max. 22)

In large ART centers with heavy workloads respecting these exact time intervals is frequently challenging
What is the *safe* time range between ovulation triggering and oocyte injection regarding embryological and clinical outcome?
STUDY DESIGN

Single-centre retrospective analysis
STUDY DESIGN

Single-centre retrospective analysis

Period: 2010-2015
STUDY DESIGN

Single-centre retrospective analysis

Period: 2010-2015

8811 ICSI cycles
STUDY DESIGN

Single-centre retrospective analysis

8811 ICSI cycles

Period: 2010-2015

Inclusion/exclusion criteria

- Fresh oocytes and ejaculated sperm
- Testicular/epididymal sperm
- Natural cycles
- PGT, IVM, IVF, IVF/ICSI
- Donation (sperm/oocyte)
STUDY DESIGN

Time intervals trigger - ICSI
STUDY DESIGN

Time intervals trigger - ICSI: <36h, 36h, 37h, 38h, 39h, 40h and ≥41h

Outcome measures:
- Oocyte maturation
- Fertilization
- Embryo Utilization rate
- Clinical pregnancy rate (CPR)
- Live birth rate (LBR)
STUDY DESIGN

Time intervals trigger - ICSI:
<36h, 36h, 37h, 38h, 39h, 40h and ≥41h

Statistics: multivariate multilevel mixed modeling regression analysis

Outcome measures:
- Oocyte maturation
- Fertilization
- Embryo Utilization rate
- Clinical pregnancy rate (CPR)
- Live birth rate (LBR)
STUDY DESIGN

Time intervals trigger - ICSI: <36h, 36h, 37h, 38h, 39h, 40h and ≥41h

Statistics: multivariate multilevel mixed modeling regression analysis

Outcome measures:
- Oocyte maturation
- Fertilization
- Embryo Utilization rate
- Clinical pregnancy rate (CPR)
- Live birth rate (LBR)

Adjusting for confounders
- female age,
- number of oocytes,
- day of transfer,
- number of embryos transferred
- embryo quality
RESULTS

Demographic and Cycle Characteristics

<table>
<thead>
<tr>
<th></th>
<th><36h</th>
<th>36h</th>
<th>37h</th>
<th>38h</th>
<th>39h</th>
<th>40h</th>
<th>≥41h</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>826</td>
<td>1341</td>
<td>1344</td>
<td>1944</td>
<td>1797</td>
<td>1487</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>35.6</td>
<td>35.2</td>
<td>34.5</td>
<td>34.6</td>
<td>34.8</td>
<td>34.4</td>
<td>34.1</td>
<td><0.001*</td>
</tr>
<tr>
<td>#COC</td>
<td>8.3</td>
<td>7.6</td>
<td>8.8</td>
<td>8.6</td>
<td>8.3</td>
<td>8.3</td>
<td>8.9</td>
<td>0.02*</td>
</tr>
<tr>
<td>Day of ET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79.4%</td>
<td>76.4%</td>
<td>69.7%</td>
<td>73.5%</td>
<td>69.8%</td>
<td>66.5%</td>
<td>64.4%</td>
<td><0.001**</td>
</tr>
<tr>
<td>5</td>
<td>20.6%</td>
<td>23.6%</td>
<td>30.3%</td>
<td>26.5%</td>
<td>30.2%</td>
<td>33.5%</td>
<td>35.6%</td>
<td></td>
</tr>
</tbody>
</table>

* One-way ANOVA **Pearson’s χ² test
RESULTS

Demographic and Cycle Characteristics

<table>
<thead>
<tr>
<th></th>
<th><36h</th>
<th>36h</th>
<th>37h</th>
<th>38h</th>
<th>39h</th>
<th>40h</th>
<th>≥41h</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>826</td>
<td>1341</td>
<td>1344</td>
<td>1944</td>
<td>1797</td>
<td>1487</td>
<td></td>
</tr>
<tr>
<td>#Embryos transferred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41.7%</td>
<td>37.5%</td>
<td>38.6%</td>
<td>37.4%</td>
<td>39.8%</td>
<td>39.2%</td>
<td>40.7%</td>
<td>0.127**</td>
</tr>
<tr>
<td>2</td>
<td>34.7%</td>
<td>43.6%</td>
<td>41.9%</td>
<td>43.0%</td>
<td>43.5%</td>
<td>44.5%</td>
<td>44.5%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11.1%</td>
<td>11.7%</td>
<td>10.4%</td>
<td>11.7%</td>
<td>11.2%</td>
<td>9.3%</td>
<td>9.6%</td>
<td></td>
</tr>
<tr>
<td>EQ for ET (best)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>76.2%</td>
<td>71.2%</td>
<td>70.8%</td>
<td>71.3%</td>
<td>69.1%</td>
<td>69.2%</td>
<td>69.6%</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>22.2%</td>
<td>23.5%</td>
<td>24.4%</td>
<td>24.7%</td>
<td>26.8%</td>
<td>25.1%</td>
<td>25.3%</td>
<td>0.469**</td>
</tr>
<tr>
<td>C</td>
<td>1.6%</td>
<td>5.2%</td>
<td>4.2%</td>
<td>3.7%</td>
<td>3.4%</td>
<td>5.0%</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.6%</td>
<td>0.7%</td>
<td>1.1%</td>
<td></td>
</tr>
</tbody>
</table>

* One-way ANOVA **Pearson’s χ² test
RESULTS

The interval of 36h and 36h occurred only if OPU was carried out before the planned 36h trigger interval and followed by immediate injection.
RESULTS

Outcome parameters (after adjusting for confounders)

<table>
<thead>
<tr>
<th></th>
<th><36h</th>
<th>36h</th>
<th>37h</th>
<th>38h</th>
<th>39h</th>
<th>40h</th>
<th>≥41h</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>826</td>
<td>1341</td>
<td>1344</td>
<td>1944</td>
<td>1797</td>
<td>1487</td>
<td></td>
</tr>
<tr>
<td>Maturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76.4%</td>
<td>80.7%</td>
<td>79.9%</td>
<td>80.9%</td>
<td>81.5%</td>
<td>82.7%</td>
<td>83.2%</td>
<td><0.001*</td>
</tr>
<tr>
<td>Fertilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td></td>
<td>69.2%</td>
<td>75.7%</td>
<td>74.7%</td>
<td>75.5%</td>
<td>77.1%</td>
<td>77.1%</td>
<td>79.3%</td>
<td><0.020*</td>
</tr>
<tr>
<td>Utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>72.9%</td>
<td>77.0%</td>
<td>76.9%</td>
<td>79.0%</td>
<td>77.8%</td>
<td>75.0%</td>
<td>76.0%</td>
<td><0.020*</td>
</tr>
<tr>
<td>Day 5</td>
<td>62.1%</td>
<td>49.9%</td>
<td>51.1%</td>
<td>50.3%</td>
<td>52.6%</td>
<td>50.4%</td>
<td>48.8%</td>
<td>0.072*</td>
</tr>
</tbody>
</table>

*Multivariate multilevel logistic regression; predicted probabilities

Utilization rate: number of embryos utilized (transferred or cryopreserved) per number of 2PN zygotes
RESULTS

Outcome parameters (after adjusting for confounders)

<table>
<thead>
<tr>
<th></th>
<th><36h</th>
<th>36h</th>
<th>37h</th>
<th>38h</th>
<th>39h</th>
<th>40h</th>
<th>≥41h</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>826</td>
<td>1341</td>
<td>1344</td>
<td>1944</td>
<td>1797</td>
<td>1487</td>
<td></td>
</tr>
<tr>
<td>CPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>20.9%</td>
<td>27.0%</td>
<td>26.2%</td>
<td>28.7%</td>
<td>27.4%</td>
<td>26.7%</td>
<td>26.5%</td>
<td>0.860*</td>
</tr>
<tr>
<td>Day 5</td>
<td>21.2%</td>
<td>53.1%</td>
<td>49.1%</td>
<td>43.6%</td>
<td>45.8%</td>
<td>44.2%</td>
<td>49.7%</td>
<td>0.128*</td>
</tr>
<tr>
<td>LBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>12.9%</td>
<td>18.8%</td>
<td>18.5%</td>
<td>20.6%</td>
<td>19.3%</td>
<td>17.9%</td>
<td>18.2%</td>
<td>0.681*</td>
</tr>
<tr>
<td>Day 5</td>
<td>21.3%</td>
<td>41.0%</td>
<td>38.1%</td>
<td>35.3%</td>
<td>36.2%</td>
<td>34.7%</td>
<td>39.9%</td>
<td>0.449*</td>
</tr>
</tbody>
</table>

Multivariate multilevel logistic regression; predicted probabilities
RESULTS

Outcome parameters (after adjusting for confounders)

<table>
<thead>
<tr>
<th></th>
<th><36h</th>
<th>36h</th>
<th>37h</th>
<th>38h</th>
<th>39h</th>
<th>40h</th>
<th>≥41h</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>826</td>
<td>1341</td>
<td>1344</td>
<td>1944</td>
<td>1797</td>
<td>1487</td>
<td></td>
</tr>
<tr>
<td>CPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>20.9%</td>
<td>27.0%</td>
<td>26.2%</td>
<td>28.7%</td>
<td>27.4%</td>
<td>26.7%</td>
<td>26.5%</td>
<td>0.860*</td>
</tr>
<tr>
<td>Day 5</td>
<td>21.2%</td>
<td>53.1%</td>
<td>49.1%</td>
<td>43.6%</td>
<td>45.8%</td>
<td>44.2%</td>
<td>49.7%</td>
<td>0.128*</td>
</tr>
<tr>
<td>LBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>12.9%</td>
<td>18.8%</td>
<td>18.5%</td>
<td>20.6%</td>
<td>19.3%</td>
<td>17.9%</td>
<td>18.2%</td>
<td>0.681*</td>
</tr>
<tr>
<td>Day 5</td>
<td>21.3%</td>
<td>41.0%</td>
<td>38.1%</td>
<td>35.3%</td>
<td>36.2%</td>
<td>34.7%</td>
<td>39.9%</td>
<td>0.449*</td>
</tr>
</tbody>
</table>

*Multivariate multilevel logistic regression; predicted probabilities
Results

Outcome parameters (after adjusting for confounders)

<table>
<thead>
<tr>
<th></th>
<th><36h</th>
<th>36h</th>
<th>37h</th>
<th>38h</th>
<th>39h</th>
<th>40h</th>
<th>≥41h</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>20.9%</td>
<td>27.0%</td>
<td>26.2%</td>
<td>28.7%</td>
<td>27.4%</td>
<td>26.7%</td>
<td>26.5%</td>
<td>0.860*</td>
</tr>
<tr>
<td>Day 5</td>
<td>21.2%</td>
<td>53.1%</td>
<td>49.1%</td>
<td>43.6%</td>
<td>45.8%</td>
<td>44.2%</td>
<td>49.7%</td>
<td>0.128*</td>
</tr>
<tr>
<td>LBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>12.9%</td>
<td>18.8%</td>
<td>18.5%</td>
<td>20.6%</td>
<td>19.3%</td>
<td>17.9%</td>
<td>18.2%</td>
<td>0.681*</td>
</tr>
<tr>
<td>Day 5</td>
<td>21.3%</td>
<td>41.0%</td>
<td>38.1%</td>
<td>35.3%</td>
<td>36.2%</td>
<td>34.7%</td>
<td>39.9%</td>
<td>0.449*</td>
</tr>
</tbody>
</table>

Multivariate multilevel logistic regression; predicted probabilities
The <36h group scores 8-10% lower in predicted LBR while all other groups differ <1%. However, the wide confidence intervals show some uncertainty in the <36h group.
STRENGTHS & WEAKNESSES

- Largest dataset
- Adjustment for potential confounders
- Only study that assesses the effect of <36h hCG-OPU timing on live birth rate
- Retrospective study
- Results cannot be extrapolated to IVM, conventional IVF or injection with testicular/epididymal sperm
CONCLUSIONS

- The interval after ovulation triggering in which insemination/injection can be performed without a negative impact on embryological and clinical outcome is 36h – 41h

- Injection <36h after trigger is not recommend

- Allows for more flexibility in IVF laboratories with an intensive workload
THANK YOU FOR YOUR ATTENTION
Questions?

KEEP CALM AND ASK QUESTIONS