Mitochondrial DNA variants in individuals born after ART compared to spontaneously conceived peers

Children born after ART

- Lower birth weight
- Congenital abnormalities
- Cardiometabolic disorders
Mitochondrial DNA mutations

- Lower birth weight
- Cancer
- β-cell failure
- Epilepsy
- Neurilemmal neoplasms
- Atherogenesis
- Increase in cholesterol synthesis
- Ataxia
- Ischemia
- Ophtalmoplegia
- Myopathy
- Neuropathy
- Type 2 Diabetes
- Rapid ageing
- Pancytopenia
- Infertility
Controlled ovarian stimulation during oogenesis

Cellular stress
- Replication stress \uparrow
- mtDNA mutation rate \uparrow

Recruitment of multiple follicles
- Prevents dominant follicle
- Includes recruitment of ‘less fit’ oocytes with mtDNA mutations?

Shoubridge et Wai, 2007
CHILDREN BORN AFTER ART CARRY MORE VARIANTS IN THEIR MITOCHONDRIAL DNA AND AT A HIGHER LOAD
Material & Methods

Blood
- 116 ICSI
- 65 Control

Placenta
- 28 ICSI
- 27 Control

Saliva
- 107 IVF
- 6 Control

Buccal swab
- 63 Control
Homoplasmy versus Heteroplasmy

Homoplasmic variant
- 100%

Heteroplasmic variants
- 60%
- 40%
- 20%
Subhaplogroup U4 is over-represented in the ART group

* p=0.006
More unique variants in the ART group

* $p=0.0004$
Homoplasmy versus Heteroplasmy

- **Homoplasmy**
 - Homoplasmic variant: 100%

- **Heteroplasmy**
 - Heteroplasmic variants:
 - 60%
 - 40%
 - 20%

 = Cumulative load
Increased cumulative heteroplasmic load in the coding region in ART

Cumulative coding heteroplasmic load (%)

Combined heteroplasmic load in coding regions

p=0.0294
Increased cumulative heteroplasmic load in the coding region in ART
Increased cumulative loads seem to correlate with a lower birth weight
Maternal age doesn’t seem to correlate with a higher cumulative load.
Conclusion

• Subhaplogroup U4 is over-represented in the ART group: a link to maternal infertility?

• Increase in non-described homoplasmies:
 → mostly synonymous: origin?

• Increased cumulative coding heteroplastic variant load

• Higher cumulative load appears to correlate with lower birth weight

• Maternal age doesn’t seem to influence mtDNA variant load
Acknowledgements

Prof. Dr. Claudia Spits
Prof. Dr. Karen Sermon
Prof. Dr. Maryse Bonduelle
Prof. Dr. Sara Seneca
Dr. Florence Belva
Dr. Filippo Zambelli
Dr. Aafke van Montfoort